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Abstract The basic quantum mechanical relation between fluctuations of transported
charge and current correlators is discussed. It is found that, as a rule, the correlators are
to be time-ordered in an unusual way. Instances where the difference with the conventional
ordering matters are illustrated by means of a simple scattering model. We apply the results
to resolve a discrepancy concerning the third cumulant of charge transport across a tunnel
junction.

Keywords Time ordering · Correlation functions · Counting statistics · Contact terms ·
Schwinger terms · Transport theory

1 Introduction

Transport in mesoscopic systems has been discussed using different approaches, based on
current correlators [1–4], either time- or in/out-ordered, or on the statistics of the transferred
charge [5] (and, related to the latter, on the precession of a spin coupled to current [6]). In
this work we intend to address two main points. First, we describe the relation between the
counting statistics and the time ordering of correlators. It turns out that the correct time
ordering differs as a rule from the conventional one, T, and is given by the Matthews’
T∗-ordering [7]. Second, we will present a model of energy independent scattering, where
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that difference matters. Though the model is implicit in previous works [2, 6, 8], its for-
malization allows to establish the equivalence between the in/out- and the T∗-ordering of
currents and hence between the two approaches mentioned at the beginning.

An application of these findings is the clarification of a discrepancy between [9] and
[8] concerning the third cumulant of charge transfer through a tunnel junction. In [8] the
discrepancy was claimed to be entirely due to the difference existing between unordered
and T-ordered correlators [5, 10]. Our explanation is different, as we spell out momentarily.

An often chosen framework rests on states |t, α〉 forming a basis and labelled by their
time t of passage across a fiducial point and w.r.t. a reference dynamics, as well as by fur-
ther quantum numbers α. To be precise, in such a scheme t is an observable which entails as
its canonically conjugate operator a Hamiltonian whose spectrum similarly covers the real
line. The description is therefore an effective one valid near the Fermi energy; indeed, from
that perspective the energy spectrum appears unbounded. This remark being made, the scat-
tering amplitude from |t1, α1〉 to |t2, α2〉 is denoted by Sα2α1(t2 − t1). Equivalence between
in/out- and T-ordering has been shown [4, 8] under the assumption that the scattering matrix
satisfies

S(t) = 0 (t ≤ 0).

The assumption, there called causality, should be called strict causality, as it e.g. rules out the
limiting, but simple case of instantaneous, S(t) ∝ δ(t), or equivalently, energy independent
scattering. Actually, in the latter case, disagreement between the two orderings was found
[9, 11]. Our observation that T∗ rather than T matters explains this difference, in that only
for strictly causal scattering the two orderings agree. Generally the difference takes the guise
of a Schwinger term related to the infinite depth of the Fermi sea, at least for the lowest order
cumulant where the difference matters, i.e. the third. That cumulant has been the object of
experimental work [12, 13], which may be read as a confirmation of the T∗ ordering in the
above mentioned model.

The plan of the paper is as follows. In Sect. 2 we discuss the general relation between the
generating function of the moments of the tranferred charge and the time ordering of current
correlators. It is unrelated to scattering and not necessarily placed within a scheme of second
quantization. In Sect. 3 we introduce a model of energy independent scattering at the level
of first quantization. We also discuss the equivalence between in/out- and T∗-ordering. In
Sect. 4 we will promote the model to second quantization. The quantities of Sect. 2, as well
as others, can then be computed explicitly and the relation found there illustrated on this
example.

2 The T∗-ordering of Current Correlators

2.1 The Result and Its Context

We consider a current carrying device as symbolically illustrated in Fig. 1. The generating
function of counting statistics [10] is

χ(λ, t) = 〈eiλ�Q〉 =
∞∑

k=0

(iλ)k

k! 〈(�Q)k〉,

where 〈(�Q)k〉 is the k-th moment of the charge transported during time t . Similarly, logχ

generates the cumulants 〈〈(�Q)k〉〉. Several quantum mechanical expression for χ have been
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Fig. 1 A device connecting two
leads

proposed, based in part on different measurement protocols. The first proposal [10] is

χ(λ, t) =
〈

exp

(
iλ

∫ t

0
I (t ′)dt ′

)〉
,

where I (t) is the current operator at the junction and at time t , and 〈·〉 has become the
expectation in the initial quantum state of the system. The second one [5] reads, as recast
by [14],

χ(λ, t) = 〈eiλQ(t)e−iλQ〉 = 〈eiHteiλQe−iHte−iλQ〉, (2.1)

where Q(t) = exp(iHt)Q exp(−iHt) is the charge operator on the right of the junction and
at time t , and H is the Hamiltonian. The definition is appropriate to the situation where the
initial state is an eigenstate of Q and the charge is measured after time t . In fact, if the initial
eigenvalue is q , then χ(λ, t) = 〈eiλQ(t)〉e−iλq just describes the statistics of q ′ − q , where q ′
is the (random) outcome of the measurement of Q(t). The quantity q ′ − q is identified with
the transported charge �Q. We mention in passing that there is a generalization [15] of this
definition to the case where the assumption on the initial state does not apply and q is the
outcome of the measurement of Q(0) = Q.

A further proposal [6, 16] is based on observing a spin coupled to current

χ(λ, t) = 〈eiH(−λ/2)te−iH(λ/2)t 〉 = 〈e−i λ
2 QeiHteiλQe−iHte−i λ

2 Q〉, (2.2)

where H(λ) = eiλQHe−iλQ. This approach does not require the initial state to be an eigen-
state of Q, but if it does, then it agrees with (2.1). A related proposal was put forward
in [9, 17] (with similar expressions found in [4, 18]). It is given by the Keldysh time-ordered
expression

χ(λ, t) =
〈
	T exp

(
i(λ/2)

∫ t

0
I (t ′)dt ′

)
T exp

(
i(λ/2)

∫ t

0
I (t ′)dt ′

)〉
, (2.3)

where T denotes the usual time-ordering and 	T the one in the opposite direction. For later
purposes we recall that the time ordering is supposed to occur inside the integrals once the
exponential is expanded in powers of λ.

Equations (2.2) and (2.3) may differ in some applications, as it is the case in the very sim-
ple situation of independent fermions passing with fixed transparency T across a scatterer
biased by V . In fact it was found in [6] and [9] that the third cumulants are, respectively,

〈〈(�Q)3〉〉 = T (1 − T )(1 − 2T )
V t

2π
, 〈〈(�Q)3〉〉 = −2T 2(1 − T )

V t

2π
. (2.4)

In [8] the first answer has been found for the second approach, i.e. for (2.3), by trading the
Keldysh ordering for in/out-ordering. This step in turn relies on the strict causality of the
scattering matrix, which however precludes it from being energy-independent.

The results of this article explain the discrepancies. We will consider (2.1) for simplicity,
though similar considerations could be made for (2.2). As mentioned before, the two defin-
itions agree in some cases, including the model underlying (2.4). We want to point out that
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some care is to be exercised when expressing the moments in terms of time-ordered current
correlation functions. The result is

〈(�Q)k〉 =
∫ t

0
dkt

〈
T∗(I (t1) · · · I (tk))

〉
, (2.5)

where dkt = dt1 · · ·dtk , I (t) = dQ(t)/dt , Q(t) = exp(iHt)Q exp(−iHt), and T∗ means
that the derivative has to be taken after the time ordering:

T∗(I (t1) · · · I (tn)) := ∂

∂tn
· · · ∂

∂t1
T(Q(t1) · · ·Q(tn)). (2.6)

Hence, (2.1) may be summarized as χ(λ, t) = 〈T∗ exp(i(λ/2)∫t
0 I (t ′)dt ′)〉; by (2.6), this

amounts to keeping the time ordering outside of the integrals of the exponential series. Sim-
ilarly, (2.2) is equivalent to (2.3) once stars are added to the time orderings.

It should be emphasized that T∗(I (t1) · · · I (tn)) is not, strictly speaking, a prescrip-
tion of ordering currents, since it is defined in terms of charges. It is moreover known
[7, 19] and will be shown below that, as a rule, (2.6) differs from T (I (t1) · · · I (tn)) =
T ((dQ(t1)/dt1) · · · (dQ(tn)/dtn)) by contact terms supported at coinciding times, but agrees
with it if [Q,I ] = 0.

In order to give a first impression of this commutator, we temporarily deviate from
the general discussion and consider operators pertaining to a single particle moving on
a line. The operator representing charge on the right half-line is Q = θ(x), meaning
multiplication by the Heaviside step function. For a Hamiltonian like H = p2 we have
I = i[H,Q] = pδ(x) + δ(x)p, whence [Q,I ] �= 0, even if the step were smoothed out. By
contrast, for a Hamiltonian describing a right moving particle, H = p, we have I = δ(x) and
[Q,I ] = 0. By combining two copies of such a model we will describe scattering between
right and left movers. There, the property [Q,I ] = 0 will persist only if scattering is strictly
causal.

2.2 The Derivation

In this section we show (2.5) and obtain an expansion of (2.6) in contact terms. Any arising
operators will be assumed to be properly defined and that will be implicitely verified in later
sections in the context of applications.

Either side of
〈
(eiHteiλQe−iHt )e−iλQ

〉 = 〈
eiHt (eiλQe−iHte−iλQ)

〉
(2.7)

is an expression for χ(λ, t) and may serve as a starting point for the derivation of (2.5). We
will follow both avenues, because the l.h.s. leads to a simple proof, while the r.h.s. has often
been considered in the literature [6, 20].

We begin with the l.h.s., which yields

χ(λ, t) = 〈eiλQ(t)e−iλQ〉 = 〈Teiλ(Q(t)−Q)〉

and hence

〈(�Q)k〉 = 〈T(Q(t) − Q)k〉 = 〈
T((Q(t1) − Q) · · · (Q(tk) − Q))

〉∣∣
t1=···=tk=t

.
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We note that the expression in brackets vanishes if ti = 0 for some i = 1, . . . , n. By
repeated use of the fundamental theorem of calculus we obtain

〈(�Q)k〉 =
∫ t

0
dt1

∂

∂t1

〈
T((Q(t1) − Q) · · · (Q(tk) − Q))

〉∣∣
t2=···=tk=t

=
∫ t

0
dkt

∂

∂tk
· · · ∂

∂t1

〈
T((Q(t1) − Q) · · · (Q(tk) − Q))

〉
.

Expanding the correlator in Q(ti) and −Q, the resulting second term is independent of ti
and does not contribute to the derivative. This proves (2.5).

Let us now turn to the r.h.s. of (2.7):

χ(λ, t) = 〈eiHte−iH(λ)t 〉,

where

H(λ) = eiλQHe−iλQ =
∞∑

j=0

(iλ)j

j ! adj

Q(H)

with multiple commutators defined by ad0
A(B) = B , adj

A(B) = [A, adj−1
A (B)] (j ≥ 1).

Therefore, eiHte−iH(λ)t is the propagator in the interaction picture for H with interaction

W = H(λ) − H = i
∞∑

j=1

(iλ)j

j ! adj−1
Q (I). (2.8)

It is expressed by the Dyson expansion

eiHte−iH(λ)t =
∞∑

n=0

(−i)n

n!
∫ t

0
dntT(W(t1) · · ·W(tn))

with W(t) = exp(iHt)W exp(−iHt). The term of order λk in the expansion is obtained by
picking the power λji from W(ti) through (2.8), in such a way that

∑n

i=1 ji = k:

〈(�Q)k〉 =
∑

n,(j1,...jn)∑
i ji=k

k!
n!j1! · · · jn!

∫ t

0
dnt

〈
T(ad(j1−1)

Q (I )(t1) · · · ad(jn−1)

Q (I )(tn))
〉
.

The domain of integration is invariant under permutations of the times and the integrand
under those of its factors. Thus, n-tuples (j1, . . . , jn) differing only by order may be binned
together. To this end, let

nj = 
{l | jl = j} (2.9)

be the number of times the power λj has been picked. Each bin then consists of

n!
n1! · · ·nk!
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tuples, since permutations among equal ji ’s do not generate new tuples. Thus,

〈(�Q)k〉 =
∑

(n1,n2,...)∑
j jnj =k

k!
(
∏∞

i=1 ni !)(∏∞
j=1 j !nj )

∫ t

0
dnt

〈
T(ad(j1−1)

Q (I )(t1) · · · ad(jn−1)

Q (I )(tn))
〉
,

(2.10)
where n = ∑

j nj and the jl’s satisfy (2.9). The products are finite because of the condition∑
j jnj = k.
The derivation just given establishes the equality between (2.10) and (2.5). In the follow-

ing we give an independent one by expanding (2.5) in contact terms.

Proposition 1

T∗(I (t1) · · · I (tk)) = ∂

∂tk
· · · ∂

∂t1
T(Q(t1) · · ·Q(tk))

=
∑

P∈Pk

T

(∏

C∈P

adn(C)−1
Q (I)(tC)δC

)
, (2.11)

where the sum runs over all partitions P of {1, . . . , k} into nonempty disjoint subsets C.
By δC we understand a product of δ-functions collapsing the times ti (i ∈ C) to a single
time tC = ti . More precisely, for C consisting of n(C) elements, C = {i1, . . . , in(C)}, we set
δC = ∏n(C)−1

j=1 δ(tij − tij+1); in particular δC = 1 for n(C) = 1.

Remark The partition into single-element clusters contributes T(I (t1) · · · I (tk)).

Proof We claim the slightly more general statement for 0 ≤ l ≤ k:

∂

∂tl
· · · ∂

∂t1
T(Q(t1) · · ·Q(tk)) =

∑

P∈Pl

T

((∏

C∈P

adn(C)−1
Q (I)(tC)δC

)
· Q(tl+1) · · ·Q(tk)

)
,

(2.12)
where the sum now runs over Pl instead of Pk . This is trivially true for l = 0 and identical
to (2.11) for l = k. To run the induction in l, we note that for operators Ai associated with
times ti ,

∂

∂tj
T(A1 · · ·Ar) = T(A1 · · · Ȧj · · ·Ar) +

r∑

i=1,i �=j

δ(tj − ti )T([Aj ,Ai]A1 · · · Ǎi · · · Ǎj · · ·Ar),

(2.13)
where ˇ denotes omission. Using this with j = l + 1 on (2.12) we observe that
δ(tl+1 − ti )[Q(tl+1),Q(ti)] = 0. The other commutators so generated are

δ(tl+1 − tC)[Q(tl+1), adn(C)−1
Q (I)(tC)] = δ(tl+1 − tC)adn(C)

Q (I )(tC),

so that

∂

∂tl+1
· · · ∂

∂t1
T(Q(t1) · · ·Q(tk))

=
∑

P∈Pl

T

((∏

C∈P

adn(C)−1
Q (I)(tC)δC

) · I (tl+1)Q(tl+2) · · ·Q(tk)

)
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+
∑

P∈Pl

∑

C′∈P

T

(
adn(C′)

Q (I )(tC′)δC′δ(tl+1 − tC) ·
( ∏

C∈P
C �=C′

adn(C)−1
Q (I)(tC)δC

)

· Q(tl+2) · · ·Q(tk)

)
.

This agrees with (2.12) for l + 1 in place of l. In fact, partitions of {1, . . . , l + 1} are distin-
guished by whether the cluster C̃ containing l+1 is C̃ = {l+1} (first line) or C̃ = C ′ ∪{l+1}
with C ′ ∈ P ∈ Pl (second line); in this case, n(C̃) − 1 = n(C ′). �

We can now verify the stated equality. After inserting (2.11) in (2.5), partitions P ∈ Pk

can be binned according to the numbers nj (j = 1,2, . . .) of their clusters of size j (hence∑
j jnj = k). Each bin consists of

k!
(
∏∞

i=1 ni !)(∏∞
j=1 j !nj )

partitions. In fact, permutations of k elements permuting or preserving clusters do not gener-
ate new partitions. Since in (2.11),

∑
C n(C) = k and

∑
j nj = n, the equality between (2.10)

and (2.5) is established.

3 The Instantaneous Scattering Model

3.1 The Model

Transport of charge across a scatterer at zero temperature and at a small bias ought to be
determined fully by the Fermi velocity (equal to 1 in suitable units) and the scattering matrix
at the Fermi energy. The Fermi sea is, effectively, infinitely deep. The model we are about
to define is minimal in the sense that it is fully determined by that matrix. The left and right
reservoirs are represented by two infinite one-dimensional leads, which are however chiral.
The scattering between leads occurs instantaneously at a single point. The model may be
seen as describing a quantum point contact.

Let H = L2(R) ⊕ L2(R) ∼= L2(R;C
2) be the single-particle Hilbert space of the model.

The charge operator Q is the projection onto the right lead,

Q =
(

0 0
0 1

)
,

the second quantization of which will later represent the number of particles there. In ab-
sence of interaction, states ψ ∈ H evolve in time according to ψ(x − t). The corresponding
Hamiltonian H0 is linear in the momentum:

H0 =
(

p 0
0 p

)
, (3.1)

where p = −id/dx and the derivative is taken in the sense of distributions. Scattering be-
tween leads is determined by the matrix

S =
(

r t′
t r′

)
. (3.2)
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We will specify the resulting Hamiltonian [21] at the end of this section. First however, we
define the unitary group generated by it, because it is simpler and it is all which is needed in
the rest of the paper. It is

(U(t)ψ)(x) =
{

ψ(x − t) + (S − 1)θ(0 < x < t)ψ(x − t) (t > 0),

ψ(x − t) + (S∗ − 1)θ(t < x < 0)ψ(x − t) (t < 0),
(3.3)

and is motivated by the idea that the part of the freely evolved wave function ψ(x− t) which,
say for times t > 0, has crossed the scatterer at x = 0 between times 0 and t gets replaced
by Sψ(x − t). One readily verifies that U(t) is a strongly continuous 1-parameter group.

Letting U(t) act on the charge operator, we get

Q(t) = U(t)∗QU(t) =
{

Q(θ(−x − t) + θ(x)) + S∗QSθ(x + t)θ(−x) (t > 0),

Q(θ(−x) + θ(x + t)) + SQS∗θ(−x − t)θ(x) (t < 0),
(3.4)

or equivalently

Q(t) = (Qθ(−x − t)+S∗QSθ(x + t))θ(−x)+ (SQS∗θ(−x − t)+Qθ(x + t))θ(x). (3.5)

It yields the current

I (t) = dQ(t)

dt
= ((S∗QS − Q)θ(−x) + (Q − SQS∗)θ(x))δ(x + t), (3.6)

which is well-defined as a distribution in t .
We now come to the description of the generator H , a self-adjoint operator by Stone’s

theorem. To this end, let

D+ = {ψ+ ∈ L2(R+;C
2) | ψ ′

+ ∈ L2(R+;C
2)},

where the derivative ψ ′+ is that of a distribution on R+ = (0,∞), i.e. away from the origin.
Any function ψ ∈ D+ is continuous up to the boundary x = 0, and let ψ+(0) be its boundary
value. Any function in L2(R+;C

2) may be seen as a distribution on all of R. In this sense,
the derivative of ψ+ ∈ D+ is

d

dx
ψ+ = ψ ′

+(x) + ψ+(0)δ(x). (3.7)

We may similarly define ψ− ∈ D− based on R− = (−∞,0). Then,

d

dx
ψ− = ψ ′

−(x) − ψ−(0)δ(x). (3.8)

Given ψ ∈ L2(R;C
2), let ψ± be their restrictions to the half-lines R±.

Proposition 2 The generator H of U(t) has domain

D(H) = {ψ ∈ H | ψ± ∈ D±,ψ+(0) = Sψ−(0)}
and is given by

(Hψ)(x) = −i(ψ ′
+(x) + ψ ′

−(x)).
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We recall that D(H) consists of those states ψ ∈ H for which the limit limt→0 t−1(U(t)−
1)ψ = −iHψ exists, thereby defining Hψ .

Proof Let first t > 0. Then

(U(t)ψ)(x) = ψ+(x − t) + ψ−(x − t) + (S − 1)θ(x)ψ−(x − t).

Using (3.7, 3.8), we find

U(t) − 1

t
ψ

t↓0−→ − d

dx
ψ+ − d

dx
ψ− + (S − 1)ψ−(0)δ (3.9)

= −(ψ ′
+ + ψ ′

−) + (Sψ−(0) − ψ+(0))δ (3.10)

in the sense of distributions if ψ± ∈ D±. Actually, this last condition is implied by the re-
quirement ψ ∈ D(H). In fact, by using t−1(φ, (U(t)−1)ψ) = t−1((U(t)−1)φ,ψ) on a test
function φ supported away from x = 0, we obtain in the limit −i(φ,Hψ) = (φ′+ + φ′−,ψ)

and hence ψ ′± ∈ L2(R±,C
2). At that point ψ ∈ D(H) further implies Sψ−(0) = ψ+(0).

Moreover, the convergence (3.10) is attained in H. The same conclusion in reached for
t < 0, whence (3.10) is −iHψ . �

More casually, the Hamiltonian can also be written as

H = H0 + i(S − 1) · δ− = H0 − i(S∗ − 1) · δ+ = H0 + 2i
S − 1

S + 1
· δ, (3.11)

with quadratic forms δ± on D+ ∩ D− defined as (δ±ψ)(x) := δ(x)ψ(0±) and δ =
(δ+ + δ−)/2. The first expression in (3.11) corresponds to (3.9) and the remaining ones
follow from the boundary condition. Equation (3.11) is a variant of one found in [22].

We note in passing that (3.6) may alternatively be understood as a quadratic form on
D(H) for fixed t . The expression is unambiguous even at t = 0, because (S∗QS − Q)δ−
and (Q − SQS∗)δ+ agree as a result of the boundary condition.

3.2 Comparison of Time Orderings

The T∗-ordering of currents is identical to the in/out-ordering, T̃, whose definition [4] we
shall recall momentarily. For the time being, we establish this fact at the level of first quan-
tization, but we shall show in Sect. 4 that it persists under second quantization. The cur-
rent (3.6) may be split, I (t) = I+(t) + I−(t), into outgoing and incoming parts,

I+(t) = (S∗QSθ(−x) + Qθ(x))δ(x + t),

I−(t) = −(Qθ(−x) + SQS∗θ(x))δ(x + t).
(3.12)

In particular, [I±(t), I±(s)] = 0.

Proposition 3 We have

T∗(I (t1) · · · I (tk)) = T̃(I (t1) · · · I (tk)), (3.13)

where the ordering T̃ places any I−(t) to the right of any I+(t ′), regardless of t ≷ t ′ (the
order of currents of the same type is irrelevant), and extends by linearity to I (t) = I+(t) +
I−(t).



342 S. Bachmann et al.

Before giving the proof, let us make an observation. The proof of (2.11) was based on

∂

∂s
T(I (t)Q(s)) = T(I (t)I (s)) + δ(t − s)[Q(s), I (t)], (3.14)

which is a sensible equation in the context of our model. The formal analogue

∂

∂s
T(I+(t)Q(s)) = T(I+(t)I (s)) + δ(t − s)[Q(s), I+(t)] (3.15)

is meaningless on its r.h.s., and should not be used. These claims are based on the commu-
tators

[Q(s), I+(t)] = θ(t − s)δ(x + t)
([Q,S∗QS]θ(−x) + [SQS∗,Q]θ(x)

)
,

[Q(s), I−(t)] = θ(s − t)δ(x + t)
([Q,S∗QS]θ(−x) + [SQS∗,Q]θ(x)

)
, (3.16)

[I (s), I+(t)] = −δ(t − s)δ(x + t)
([Q,S∗QS]θ(−x) + [SQS∗,Q]θ(x)

)
,

which can be obtained from (3.5, 3.12). The first commutator is discontinuous at t − s = 0,
hence its multiplication with δ(t − s) in (3.15) is ambiguous. Also the first term there is
seen to exhibit an ambiguity proportional to δ(t − s). By contrast, the sum of the first two
commutators,

[Q(s), I (t)] = δ(x + t)
([Q,S∗QS]θ(−x) + [SQS∗,Q]θ(x)

)
, (3.17)

is independent of s, whence the r.h.s. of (3.14) is well-defined.

Proof The inductively stable generalization of (3.13) is

∂

∂tl
· · · ∂

∂t1
T
(
Q(t1) · · ·Q(tk)

) = T̃(I (t1) · · · I (tl);Q(tl+1) · · ·Q(tk)) (0 ≤ l ≤ k), (3.18)

where, on the r.h.s., the Q’s are time-ordered and the I− (resp. I+) are placed to their right
(resp. left). Upon differentiating the r.h.s. w.r.t. tl+1, (2.13) generates equal time commutators
only among Q’s, which vanish. Thus,

∂

∂tl+1
T̃(I (t1) · · · I (tl);Q(tl+1)Q(tl+2) · · ·Q(tk))

= T̃(I (t1) · · · I (tl); I (tl+1)Q(tl+2) · · ·Q(tk)),

indicating that I (tl+1) is still subject to time ordering relatively to Q(tl+2) · · ·Q(tk). After
splitting it, I (tl+1) = I+(tl+1) + I−(tl+1), the incoming part I−(tl+1) commutes with the
earlier Q’s on its right by (3.16); similarly, I+(tl+1) with those on its left. The result is (3.18)
with l + 1 instead of l. �

4 Second Quantization

4.1 Binomial Statistics

For fermionic many-body systems consisting of independent particles, the generating func-
tion (2.1) has been computed by Levitov and Lesovik [5] as

χ(λ, t) = (
(1 − T ) + eiλT

)V t/2π · (1 + o(t)) (t → ∞), (4.1)
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where T = |t|2 is the transmission probability and V is the bias across the scatterer. The
result describes a binomial distribution with N = tV /2π attempts. In particular, it yields the
third cumulant

〈〈�Q3〉〉ρ = V t

2π
T (1 − T )(1 − 2T ). (4.2)

Before presenting a derivation of (4.1) among others [5, 23], let us make a digression on
second quantization. In vague terms, the second quantization Â of a single-particle operator
A is the sum of its contributions from all particles i, Â = ∑

i (Ai − 〈Ai〉ρ), though with
expectation value subtracted. The notion can be formalized for infinitely many particles in
the frame of the GNS space of the multi-particle state ρ, i.e. a Hilbert space containing ρ

and its local perturbations as vectors. We shall do for ρ being a quasi-free fermionic state,
determined by a single-particle density matrix of the same name, 1 ≥ ρ = ρ∗ ≥ 0. In the
special case of a pure many-particle state, i.e. for ρ = ρ2, A admits a second quantization Â

acting on the GNS space iff

[A,ρ] ∈ I2, (4.3)

where I2 denotes the Hilbert-Schmidt operators. The exponentiated version of this criterion
is: A unitary operator U admits an implementation Û on the GNS space iff [U,ρ] ∈ I2.
The notation is slightly abusive as the construction differs from Â: The propagator U =
exp(−iHt) is promoted to Û = exp(−iĤ t). With these preliminaries, the generating func-
tion (2.1) reads

χ(λ) = 〈
Û ∗eiλQ̂Ûe−iλQ̂

〉
ρ
, (4.4)

where, in line with the hypothesis made there, we assume

[ρ,Q] = 0. (4.5)

The generating function (4.4) can be expressed in terms of the first quantized operators
through the Levitov-Lesovik (infinite) determinant [5]. In [24] a particle-hole symmetric
variant of the determinant was given a mathematical foundation on the basis of the GNS
space. We recall the result, in the case of a pure state. Set AU := U ∗AU .

Proposition 4 Let

[U,ρ] ∈ I1, (4.6)

where I1 (⊂ I2) denotes the trace class operators. Then

χ(λ) = det
(
1 + (e−iλ − 1)QUρUρ ′ + (eiλ − 1)QUρ ′

Uρ
)
,

where ρ ′ = 1 − ρ is the density matrix of holes. The determinant is Fredholm.

In the context of (4.1) and of the instantaneous scattering model (3.11), the initial density
matrix is the projection

ρ =
(

ρL 0
0 ρR

)

with ρi = θ(μi −p), (i = L,R) representing two Fermi seas biased by V = μL −μR . While
assumption (4.5) holds true, (4.6) unfortunately does not. The failure is however of minor
importance. It can be traced back to the discontinuities of (U(t)ψ)(x) at x = 0 and x = t
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introduced by U , as seen in (3.3). Technically, the hypothesis could be met by making the
scattering matrix time-dependent with S(τ) = S for most of the relevant time interval τ ∈
(0, t), but = 1 near its ends (see [24] for a similar model). The particular choice of rounding
would affect the determinant only to sub-leading order in t (cf. a log t contribution to χ(λ)

in [6]). We neglect such contributions from the result, which in view of θAUθ = θS∗ASθ

for θ = θ(−t < x < 0) becomes

χ(λ, t) = det H(t)

(
1 + (e−iλ − 1)S∗QρSρ ′ + (eiλ − 1)S∗Qρ ′Sρ

)
, (4.7)

where H(t) = L2([−t,0];C
2). The determinant is now of a form considered by Kac [25]

and Akhiezer [26], extended to the matrix case [27]: Consider a translation invariant operator
A on L2(R;C

n) with Fourier multiplier A(k). For its truncation to [−t,0], one has

log det H(t)(1 + A) → t

2π

∫ ∞

−∞
dk log det(1 + A(k)) + o(t) (t → ∞), (4.8)

where the determinant on the r.h.s is that of an n × n matrix. We apply the result to (4.7)
with n = 2 and

S∗QρSρ ′ = ρRρ ′
L

(
T 0
r
′
t 0

)
,

as well as with ρ and ρ ′ interchanged. For μL > μR we have ρRρ ′
L = 0 and ρ ′

RρL = θ(μR <

p < μL). We so obtain

logχ(λ, t) = V t

2π
log(1 + (eiλ − 1)T ) + o(t) (t → ∞),

as announced.

4.2 The Third Cumulant

In this section we apply the expansion in contact terms, (2.11), in order to compute the
third cumulant of the transported charge. The currents will have to be understood as second
quantized operators, which we emphasize by adding a hat. Equation (2.5) reads

〈〈�Q3〉〉ρ =
∫ t

0
d3t4

〈〈
T∗(Î (t1)Î (t2)Î (t3)

)〉〉
ρ

(4.9)

and the result to be re-derived is (4.2). It agrees with the binomial statistics as derived again
in the previous section and the result [8] based on the T̃ time ordering; on the other hand, it
should be contrasted with

∫ t

0
d3t

〈〈
T
(
Î (t1)Î (t2)Î (t3)

)〉〉
ρ

= −V t

2π
2T 2(1 − T ) (4.10)

which is the result obtained for 〈〈�Q3〉〉ρ in other schemes [9, 10]. The difference between
(4.9) and (4.10) is accounted for by contact terms. Indeed, in (2.11) with k = 3, the partitions
P are (1)(2)(3), (12)(3), (23)(1), (31)(2), (123), which yields

〈〈�Q3〉〉ρ =
∫ t

0
d3t〈〈TÎ1Î2Î3〉〉ρ + 3

∫ t

0
d2t〈〈TÎ1[Q̂2, Î2]〉〉ρ +

∫ t

0
dt1〈〈[Q̂1, [Q̂1, Î1]]〉〉ρ,

(4.11)
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where Q̂i = Q̂(ti), Îi = Î (ti ). Besides of (4.10), we will show that the two further integrals
are 0, resp. (V t/2π) · T (1 − T ), resulting in

〈〈�Q3〉〉ρ = V t

2π
(−2T 2(1 − T ) + 0 + T (1 − T )) = V t

2π
T (1 − T )(1 − 2T ).

It should also be remarked in passing that [Q,ρ] = 0, whence the hypothesis about the initial
state, discussed after (2.1) and underlying (4.9), is satisfied.

Before going into the proper proof of these claims, let us recall the following elementary
rules [28], which reduce computations of correlators and commutators of second quantized
operators to the level of first quantization:

〈Â〉ρ = 0,

〈〈ÂB̂〉〉ρ = 〈ÂB̂〉ρ = tr(ρAρ ′Bρ), (4.12)

〈〈ÂB̂Ĉ〉〉ρ = tr(ρAρ ′Bρ ′Cρ) − tr(ρAρ ′CρBρ),

with ρ ′ = 1 − ρ. The r.h.s. of (4.12) may be cast as tr(ρAρ ′Bρ) = tr([ρ,A]ρ ′[B,ρ]), which
is finite for A,B enjoying (4.3). Equation (4.12) implies

[Â, B̂] = [̂A,B] + (
tr(ρAρ ′Bρ) − tr(ρ ′AρBρ ′)

) · 1 ≡ [̂A,B] + S(A,B) · 1, (4.13)

where the last term is known as a Schwinger term. It implies

Â(t) = Â(t) + i
∫ t

0
dt ′S(H,A(t ′))1. (4.14)

In our case, the current Î (t) = dQ̂(t)/dt is a distribution in t . In order to give rise to
an operator on which the above may be applied, a test function is required, which will
however remain implicit. This being said, the contact terms in (4.11) are, by (4.13, 4.14),
〈〈TÎ1[Q̂2, Î2]〉〉ρ = 〈〈TÎ1 ̂[Q2, I2]〉〉ρ and 〈〈[Q̂1, [Q̂1, Î1]]〉〉ρ = 〈〈 ̂[Q1, [Q1, I1]]〉〉ρ . They are of
importance since the commutator

[Q(t), I (t)] = ([Q,S∗QS]θ(−x) + [SQS∗,Q]θ(x)
)
δ(x + t), (4.15)

resulting from (3.17), does not vanish.
The computation of the integrals (4.11) will make repeated use of the following expres-

sions. The translation invariant density matrices ρ and ρ ′ have integral kernels

ρ(x, y) = 1

2π i

1

x − y − i0
· D(x − y),

ρ ′(x, y) = 1

2π i

1

y − x − i0
· D(x − y)

with

D(z) =
(

eiμLz 0
0 eiμRz

)
.

Moreover,

S∗QS =
(

T r′t
r
′
t 1 − T

)
, [Q,S∗QS] =

(
0 −r′t
r
′
t 0

)
.
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We compute the first integrand (4.11) by temporarily dropping the time ordering.

〈〈Î1Î2Î3〉〉ρ = tr(I1ρ
′I2ρ

′I3ρ) − tr(I1ρ
′I3ρI2ρ) (4.16)

= 1

(2π i)3

tr(A(t2 − t1)A(t3 − t2)A(t1 − t3)) − tr(A(t3 − t1)A(t2 − t3)A(t1 − t2))

(t1 − t2 − i0)(t2 − t3 − i0)(t1 − t3 − i0)

(4.17)

with

A(ti − tj ) = (S∗QS − Q)D(ti − tj ) =
(

T r′t
r
′
t −T

)
D(ti − tj ), (4.18)

where we used (3.6). That results in

〈〈Î1Î2Î3〉〉ρ = −4T 2(1 − T )

(2π)3
· sinV (t1 − t2) + sinV (t2 − t3) + sinV (t3 − t1)

(t1 − t2 − i0)(t2 − t3 − i0)(t1 − t3 − i0)
, (4.19)

where V = μL − μR . In fact, the first trace equals

2iT 2(1 − T ) sinV (t3 − t1) + (cyclic)

by the following argument. It may be expressed as
∑

i,j,k=L,R AijAjkAki . The word ijk =
LLL involves a single diagonal entry of (4.18) with overall compensating phases. Its con-
tribution, T 3, cancels an opposite contribution from the similar term RRR. For LRR, we
find

r
′
teiμR(t2−t1) · (−T )eiμR(t3−t2) · r′

teiμL(t1−t3) = −T 2(1 − T )e−iV (t3−t1),

which can be combined with T 2(1 − T )eiV (t3−t1) from RLL. The remaining words provide
the cyclic permutations. To conclude, it suffices to note that the second trace is obtained by
exchanging 2 ↔ 3, which induces a change of sign in all the exponents.

We then note that (4.19) is locally integrable and we drop the regularizations. Equa-
tion (4.10) then follows from

∫ t

0
d3t

sinV (t1 − t2) + sinV (t2 − t3) + sinV (t3 − t1)

(t1 − t2)(t2 − t3)(t1 − t3)
= 2π2V t + o(t) (t → ∞).

(4.20)

Actually, the time ordering should have been reinstated, but since the expression is per-
mutation symmetric that is superfluous. Equation (4.20) can be derived by reinstating the
regularizations −i0; then the integral can be broken into three terms, the first two of which
vanish in the limit of large t . In fact, the first term has poles at t3 = t2 − i0, t1 − i0 which
do not pinch the real axis. The same applies to the second and to the t1-integration. Using∫

dt2(t1 − t2 − i0)−1 · (t2 − t3 − i0)−1 = 2π i(t1 − t3 − i0)−1, one is left with

2π i
∫ t

0
dt1dt3

sinV (t3 − t1)

(t1 − t3 − i0)2
= t · 2π i

∫
dx

sinV x

(x + i0)2
+ o(t) = 2π2V t + o(t); (4.21)

in fact, the odd part of (x + i0)−2 is ((x + i0)−2 − (x − i0)−2)/2 = π iδ′(x).
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We next consider the middle integral in (4.11). We find

〈〈Î1[Q̂2, Î2]〉〉ρ = tr(I1ρ
′[Q2, I2]ρ)

= 1

(2π i)2

1

(t1 − t2 − i0)2
· tr

(
A(t2 − t1)[Q,S∗QS]D(t1 − t2)

)

= 1

(2π i)2

1

(t1 − t2 − i0)2
· sinV (t1 − t2),

and the same result for 〈〈[Q̂2, Î2]Î1〉〉ρ except for +i0 instead of −i0. Thus, 〈〈TÎ1[Q̂2, Î2]〉〉ρ
is odd in t1 ↔ t2, and the integral vanishes.

Finally the last integrand in (4.11), being the expectation value of a commutator, reduces
to its Schwinger term

〈〈[Q̂1, [Q̂1, Î1]]〉〉ρ = tr(ρQ1ρ
′[Q1, I1]ρ) − tr(ρ ′Q1ρ[Q1, I1]ρ ′).

Using (4.15, 3.4) it equals

1

(2π i)2

∫ 0

−t1

dy

(
1

(y + t1 + i0)2
− 1

(y + t1 − i0)2

)

× tr(S∗QSD(t1 + y)[Q,S∗QS]D(−t1 − y))

= −2i

(2π i)2
T (1 − T )

∫ 0

−t1

dy sinV (y + t1)

(
1

(y + t1 + i0)2
− 1

(y + t1 − i0)2

)
,

where we noted that additional contributions from y < −t1 and y > 0 vanish because of
tr(QD(t1 + y)[Q,S∗QS]D(−t1 − y)) = 0. After changing the integration variable to x =
y + t1, both factors are odd, whence the integral equals

1

2

∫ t1

−t1

dx sinV x

(
1

(x + i0)2
− 1

(x − i0)2

)
= −iπV + o(1),

as in (4.21). We conclude that

∫ t

0
dt1〈〈[Q̂1, [Q̂1, Î1]]〉〉ρ = T (1 − T )

V t

2π
, (4.22)

as claimed.

4.3 A Strictly Causal Scattering Process

We may trade the instantaneous scattering process in use in the previous section with a
strictly causal one, all while remaining within the model of Sect. 3. That is achieved by
simply forfeiting a piece of length l > 0 of the leads in favor of the scatterer. So reinter-
preted, the scattering process lasts 2l and the contact terms should disappear. Nevertheless
the same result for the third cumulant will be obtained, though only the first terms on the
r.h.s. of (4.11) will contribute.

In physical terms we place the detector a distance l > 0 away from the scatterer; in
mathematical terms we replace Q by its regularization Ql = Qθ(|x| ≥ l) and hence I by
Il = i[H,Ql] = Q[δ(x − l) − δ(x + l)]. It ought to be noted that [Ql,ρ] �= 0, so that the
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physical appropriateness of (2.1), and hence of (4.9), could be questioned. Nevertheless,
we may just view l > 0 as a regulator before taking the limit l → 0. However, even this is
troublesome, at least in this form, because [Ql,ρ] /∈ I2 makes Q̂l undefined. That can be
remedied by smoothing the step function θ(|x| ≥ l) on a length < l. With these preliminaries
taken, the contact terms in (4.11) vanish as expected. This follows from [Q̂l, Îl] ∝ 1 and in
turn from [Ql, Il] = 0, while the corresponding Schwinger term no longer vanishes. On the
other hand, the current correlator 〈〈TÎl1Îl2Îl3〉〉 in (4.11) has a well-defined limit when the
smoothing is removed. Omitting the time ordering, it is for times ti > l [11]

〈〈Îl1Îl2Îl3〉〉ρ = T (1 − T )(1 − 2T ) · 2

(2π)3
· sinV (t1 − t2) + sinV (t2 − t3) + sinV (t3 − t1)

(t1 − t2)(t2 − t3)(t1 − t3)

− T (1 − T ) · 2

(2π)3

(
sinV (t1 − t2)

(t1 − t2)(t2 − t3 − 2l − i0)(t1 − t3 − 2l − i0)

+ sinV (t2 − t3)

(t1 − t2 + 2l − i0)(t2 − t3)(t1 − t3 + 2l − i0)

+ sinV (t3 − t1)

(t1 − t2 − 2l − i0)(t2 − t3 + 2l − i0)(t1 − t3)

)

= I + II. (4.23)

We remark that the expression reduces to (4.19) in the limit l → 0; the integral of the latter is
(4.10) and should be distinguished from the limit of the integral. We add that time-unordered
correlators, suitably symmetrized, can be measured by means of detectors discussed in [29].

The derivation of (4.23) begins as in (4.16), but with currents

I (t) = S∗QSδ(x − l + t) − Qδ(x + l + t) ≡ I+(t) + I−(t) (4.24)

split into outgoing and incoming parts. The terms involving only outgoing parts yield I. In-
deed, their contribution has the structure (4.17, 4.18), but with S∗QS−Q replaced by S∗QS.
In the description used there in reference to the first trace (4.17), the words LLL and RRR

contribute T 3 and (1 − T )3, respectively; LRR and RLL contribute T (1 − T )2e−iV (t3−t1)

and T 2(1 − T )eiV (t3−t1), with the remaining words providing cyclic permutations thereof.
Again, the second trace is obtained by flipping signs in the exponents, and the difference of
the two is

−2iT (1 − T )2 sinV (t3 − t1) + 2iT 2(1 − T ) sinV (t3 − t1)

= −2iT (1 − T )(1 − 2T ) sinV (t3 − t1),

plus cyclic permutations. Terms involving precisely one incoming currents yield II. Finally,
terms containing more than one incoming current vanish.

Each term of II exhibits two singularities not cancelled by the numerator. The terms
differ however in regard as to whether the singularities may be attained within the region
t1 ≥ t2 ≥ t3: both in the first term, neither in the second, and t1 = t2 + 2l but not t2 = t3 − 2l

in the last one. Within said region the regularization of the unaccessible singularities may be
changed from −i0 to +i0. The so modified expression II′ is permutation symmetric, like I.
This proves

〈〈TÎl1Îl2Îl3〉〉 = I + II′
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for all t1, t2, t3 ≥ l. We can now compute its integral over 0 ≤ ti ≤ t (i = 1,2,3), for large t .
The contribution from I is inferred from (4.20). The three terms of II′ contain singularities
in the variables t3, t1, respectively t2, which do not pinch the real axis. Hence II′ does not
contribute and the result is

〈〈(�Ql)
3〉〉 =

∫ t

0
d3t〈〈TÎl1Îl2Îl3〉〉 = V t

2π
T (1 − T )(1 − 2T ) + o(t).

4.4 Comparison of Time Orderings (Continued)

The purpose of this subsection is to show that (3.13) persists upon replacing the currents by
their second quantized counterparts:

T∗(Î (t1) · · · Î (tk)
) = T̃

(
Î (t1) · · · Î (tk)

)
.

Inspection of the proof of Proposition 3 shows that we need to establish [Q̂(s), Î+(t)] = 0,
(t < s) and a similar property for Î−(t). By time covariance it suffices to prove the claim for
s = 0, where Q(0) = Q. Since by (3.16) we have

[Q(s), I+(t)] = 0 (t < s), (4.25)

at the level of first quantization, we have to make sure that the property is not destroyed by
Schwinger terms:

tr(ρQ(s)ρ ′I+(t)ρ) − tr(ρ ′Q(s)ρI+(t)ρ ′) = 0,

which for s = 0 indeed follows from ρQρ ′ = 0. Alternatively, one can verify that the
Schwinger term does not change under a common translation of t and s, i.e. under con-
jugation of Q(s) and I+(t) by the propagator U(τ). Schwinger terms satisfy the Hochschild
condition S(AB,C) + S(BC,A) + S(CA,B) = 0 and hence

S([A,B],C) + S([B,C],A) + S([C,A],B) = 0.

As a result of (4.25) we have

−i
d

dτ
S(Q(s + τ), I+(t + τ))

= S([H,Q(s + τ)], I+(t + τ)) + S(Q(s + τ), [H,I+(t + τ)]) = 0.
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